Lipid-based liquid crystalline nanoparticles as oral drug delivery vehicles for poorly water-soluble drugs: cellular interaction and in vivo absorption
نویسندگان
چکیده
BACKGROUND Lipid-based liquid crystalline nanoparticles (LCNPs) have attracted growing interest as novel drug-delivery systems for improving the bioavailability of both hydrophilic and hydrophobic drugs. However, their cellular interaction and in vivo behavior have not been fully developed and characterized. METHODS In this study, self-assembled LCNPs prepared from soy phosphatidylcholine and glycerol dioleate were developed as a platform for oral delivery of paclitaxel. The particle size of empty LCNPs and paclitaxel-loaded LCNPs was around 80 nm. The phase behavior of the liquid crystalline matrix was characterized using crossed polarized light microscopy and small-angle X-ray scattering, and showed both reversed cubic and hexagonal phase in the liquid crystalline matrix. Transmission electron microscopy and cryofield emission scanning electron microscopy analysis revealed an inner winding water channel in LCNPs and a " ball-like"/"hexagonal" morphology. RESULTS Cellular uptake of LCNPs in Caco-2 cells was found to be concentration-dependent and time-dependent, with involvement of both clathrin and caveolae/lipid raft-mediated endocytosis. Under confocal laser scanning microscopy, soy phosphatidylcholine was observed to segregate from the internalized LCNPs and to fuse with the cell membrane. An in vivo pharmacokinetic study showed that the oral bioavailability of paclitaxel-loaded LCNPs (13.16%) was 2.1 times that of Taxol(®) (the commercial formulation of paclitaxel, 6.39%). CONCLUSION The findings of this study suggest that this LCNP delivery system may be a promising candidate for improving the oral bioavailability of poorly water-soluble agents.
منابع مشابه
Ionic liquids provide unique opportunities for oral drug delivery: structure optimization and in vivo evidence of utility.
Ionic liquids (ILs) have been exploited to improve the absorption of poorly water-soluble drugs. Custom-made ILs solubilized very high quantities of the poorly water-soluble drugs, danazol and itraconazole, and maintained drug solubilization under simulated gastro-intestinal conditions. A danazol-containing self-emulsifying IL formulation gave rise to 4.3-fold higher exposure than the crystalli...
متن کاملEnhancement of oral bioavailability of cyclosporine A: comparison of various nanoscale drug-delivery systems
A variety of nanoscale delivery systems have been shown to enhance the oral absorption of poorly water-soluble and poorly permeable drugs. However, the performance of these systems has seldom been evaluated simultaneously. The aim of this study was to compare the bioavailability enhancement effect of lipid-based nanocarriers with poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) to highl...
متن کاملIntroducing Self-Nanoemulsifying Drug Delivery System to Increase the Bioavailability of Oral Medications
Due to low cost, ease of administration, and lack need for trained personnel, the oral route is the most convenient and accessible way to design different medicines that could be simply consumed by patients. Regardless of the great benefits of this route, the main challenge in the bioavailability of oral medications is gastrointestinal instability. Nanotechnology is used to improve the solubili...
متن کاملSelf-Assembled Delivery Vehicles for Poorly Water-Soluble Drugs: Basic Theoretical Considerations and Modeling Concepts
Poor solubility is a well-recognized property of many drug molecules [1]. Unprotected administration of poorly water-soluble drugs is problematic. Aggregation, precipitation, uncontrolled binding, and direct exposure to a harsh biological environment render this process inefficient. The putative ‘solution’ of using higher drug concentrations narrows the window between a therapeutic success and ...
متن کاملNanosized Technological Approaches for the Delivery of Poorly Water Soluble Drugs
A major hurdle in pharmaceutical formulation is water insolubility of most of drugs affecting their stability and bioavailability. If the drug is also insoluble in organic medium, it is difficult to deliver it in a sufficiently bioavailable form and hence it is a great challenge to formulation researchers to overcome such difficulty. Although some approaches are available for enhancing th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2012